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ABSTRACT

This report describes the results obtained during the second year of a

program of continuing research in the mathematical problems associated with

*the analysis and design of Air Force sensor correlation and data fusion sys-

tems. These systems play a vital role in the command and control process, but

there presently exists no systematic and quantitative methodology for their

analysis and design. In the first year of research, ALPHATECH investigated an

important subproblem: the distributed detection problem associated with de-

termining the presence or absence of targets from a collection of distributed

sensors. In the second year of research, ALPHATECH has obtained novel, exact

expressions for the probability density functions of the local log likelihood

ratios, and has used these expressions to generate an extensive set of design

curves. In the third year of research, which is presently on-going, we arw

investigating another important class of problems, namely, sequential distrib-

uted detection problems.
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SECTION 1

INTRODUCTION

The purpose of a military command, control, and communications (C
3 ) sys-

tem is to provide timely and accurate information to commanders. An important

component of this information is the order of battle, i.e., the location and

status of forces. Military sensor correlation and data fusion systems exist

primarily to determine the order of battle.

There is at present no adequate, quantitative theoretical framework for

analysis and design of sensor correlation and data fusion systems. This is

because these systems are large scale: many thousands of individual targets

must be kept track of and aggregated into organizational units; they are

stochastic: observations are uncertain both due to noise and random errors as

well as deliberate enemy deception; and they are distributed: a myriad of

geographically separated sensor types (including humans) is present that are

interconnected by communication links with capacity limited for both technical

and security reasons.

Thus, extensions to the classical theories of centralized signal proces-

sing and detection are needed to guide the design of sensor correlation and

data fusion systems, and that is the purpose of the research reported herein.

In Section 2, we briefly survey the previous research on distributed

detection. In Section 3, we recapitulate the new results obtained under the

jei
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second year of AFOSR sponsorship. These results are discussed in much greater

detail in Appendix A, "Distributed Detection of Signal Waveforms in Additive

I Gaussian Measurement Noise." 
.
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SECTION 2

REVIEW OF PREVIOUS RESEARCH

The problem of constructing decentralized hypothesis testing rules has

recently been introduced and studied in the framework of team decision theory

[21, [3]. In this framework, Tenney and Sandell [11 considered the first sim- .

ple distributed detection problem where there are two hypotheses, denoted 0 or

1, and two detectors. In their formulation, Tenney and Sandell assumed that

the detectors have a common objective, (i.e., their detection problems are

coupled through the costs) and each detector takes one measurement (or a set

of measurements) and makes a decision based only on his own information. The

measurements of the detectors are assumed independent conditioned on the hy-

pothesis. Under these assumptions, it was shown [1] that the team optimal

strategies of the two detectors are described by thresholds which are deter-

mined by the solution of two coupled nonlinear algebraic equations.

Lauer and Sandell [41 - [7] extended the results of [1) to the case of

correlated waveform observations. They found that in general the determina-

tion of the optimal decision rules of the two detectors requires the solution

of coupled nonlinear functional equations. Then, Lauer and Sandell examined

several special cases and suboptimal approaches. For the special case of de-

tecting linearly dependent signals in white noise, they determined that the 0

local likelihood ratio is a sufficient statistic for detections and they com-

puted numerical examples for the case where the signal is a random process.

3A
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They examined a suboptimal solution consisting of local likelihood ratio tests

with jointly optimized thresholds, and obtained results for a number of inter-

esting cases.

Ekchian [8] considered a problem similar to that of Tenney and Sandell

[1] but assumed in addition that a unidirectional communication link exists

between the two detectors. Ekchian found that the team optimal decision rules

of the two detectors are described by thresholds, the computations of which

are coupled. In addition, he found that the detector receiving the communica-

tion uses one of two thresholds depending on the decision of the other detec-

tor.

The work on distributed detection reported in [1] and [41 - [8] assumes a

model with static hypotheses (i.e., the true hypothesis does not change with

time) and static observations (i.e., the detectors take one measurement or a

set of measurements and make a decision).

Teneketzis [91 considered a distributed detection problem with static hy-

potheses and dynamic observations (i.e., at each instant of time, each detec-

tor can either stop and make a decision or request more information at some

cost). Teneketzis [9] formulated a finite horizon decentralized optimal stop-

ping problem with two hypotheses, two detectors, and time which is the decen-

tralized version of Wald's problem. He found that the optimal decision rules 77
of the two detectors are described by thresholds. The thresholds of the two

detectors are time varying and coupled and are determined by the solution of

4N-2 nonlinear algebraic equation in 4N-2 unknowns, where N is the number of

observations.

Subsequently, Teneketzis and Varaiya 110] solved a distributed detection

problem with dynamic events (i.e., the case in which the true hypothesis

4
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changes with time) and dynamic observations. They formulated an infinite ho-

rizon decentralized optimal stopping problem, with two hypotheses and two de-

tectors, which is the decentralized version of a quickest detection problem.

They found that the optimal decision rules of the two detectors are described

by thresholds which can be determined by the solution of two coupled dynamic

programming equations. -

Recently, Kushner and Pacut 1111 studied a decentralized detection and

coordination problem via simulation. They consider two hypotheses, 0 or 1,

and two detectors. Each detector takes an observation at time 1 and may, if

it wishes, take an observation at time 2. The second observation costs C. The

detectors do not communicate with each other. At the end of its "obser-

vation period" each detector transmits its conditional probabilities of the

hypotheses to a coordinator who then computes the posterior probability and

decides on either 0 or 1. Kushner and Pacut [11] investigate the effects of

i - prior probability and parametric dependencies on the decision rules, as well

as sensitivity to the data, asymmetries in the design rules and other

phenomena.

-I

5 °



a ALPHATECH, INC.
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SECTION 3

REVIEW OF NEW RESULTS

The key issue addressed in the second year of our research emerged in the

process of constructing Receiver Operating Characteristics (ROCs) for the

distributed detection laws derived during the first year [4] - [7]. In con-

structing these ROCs, a Gaussian approximation to the local likelihood ratios

is inadequate since the interesting portions of the ROCs are generated by

integrating over the tails of the probability distributions of the local like-

lihood ratios. In the course of an effort to derive bounds on the detection -

and false alarm probabilities, several remarkable exact formulas for these

probabilities were obtained. These formula are novel even in the classical

;=ntralized case.

The basic difficulty can be seen from the equation

T T

i= - f f yi(t)hi(t,u)yi(u)dudt (3-1)
0 0

for the i-th local likelihood ratio Xi which expresses this quantity as a

quadratic form in the Gaussian observation process yi(t). (The kernel hi(t,u)

is the solution of a certain integral equation.) Thus the ki are emphatically

non-Gaussian.

Surprisingly, the following exact expressions can be derived for the Xi

under the hypotheses H0 (no signal present) and H1 (signal present):

6
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r +y +Y27 A / 2  (X112 )A
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where P, YI, Y2, and A are certain parameters defined in terms of the statis-

tics of the observation process Yi(t), r(.) is the Gamma function, and IV(-)

is the modified Bessel function of order v.

The probability density functions p(£l,£2lH°) and p(£1,£21H') can then be

analytically integrated to determine the ROCs. Full details are contained in

[12], which is included in this report as Appendix A. Thus, for the specific

observation process defined precisely in [12], we have been able to derive

exact formulas for the detection and false alarm probabilities, and have used

these formulas to construct design curves for distributed surveillance

systems.

I
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SECTION 4

SUMMARY

In the first two years of research, we have developed a fairly complete

theory of distributed detection with waveform observations, down to the level

of extensive design curves, for the case of static hypothesis and static

-observation structures. In the coming year, we intend to simplify to the case

of random variable rather than waveform observations, but will attempt to

generalize our results to (i) dynamic hypothesis structures and (ii) dynamic

Observation structures. Specifically, we will investigate the distributed

quickest detection problem, in which the valid hypothesis changes from H0 to

Hat some (unknown) event time. We will also investigate the decentralized

Wald problem, in which the sequence of observations is not fixed in advance,

* but can be chosen dynamically on the basis of prior observations.

[U
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APPENDIX A

DISTRIBUTED DETECTION OF SIGNAL WAVEFORMS
IN ADDITIVE GAUSSIAN OBSERVATION NOISE

by

Dr. G.S. Lauer

Dr. N.R. Sandell, Jr.
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DISTRIBUTED DETECTION OF SIGNAL WAVEFORMS

IN ADDITIVE GAUSSIAN OBSERVATION NOISE*

by

Dr. G.S. Lauert
Dr. N.R. Sandell, Jr.*

ABSTRACT

This paper is concerned with the detection of signal waveforms by a dis-

tributed surveillance network comprised of: (1) a collection of spatially
separated sensors, and (2) local signal processors collocated with the sen-
sors. The local signal processors are assumed to implement likelihood ratio
tests to detect the presence or absence of the signals. Signal detections may
be used for local decisionmaking or passed upward to a fusion center for fur-
ther processing. In either case, the local detection thresholds cannot be
determined independently, but must be determined jointly to optimize overall
surveillance system performance. Results are presented concerning the nature
of this threshold computation for a number of interesting cases.

*Research sponsored by the U.S. Air Force Office of Scientific Research under

Contract Number F49620-81-C-0015.

tFormerly with ALPHATECH, Inc. Now with Bolt, Beranek, and Newman, Inc., 10
Moulton Street, Cambridge, Massachusetts.
*ALPHATECH, Inc., 3 New England Executive Park, Burlington, Massachusetts.
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SECTION 1

INTRODUCTION

Classical detection theory (see, e.g., [11-[41*) has been motivated pri-

marily by single sensor detection problems. Although the signal processing

solutions of classical detection theory are in principle equally applicable to

multiple sensor detection problems, in practice these solutions may require

* the communication of raw received signals from physically remote sensors to a

*central processing location. In many surveillance systems, particularly mili-

tary systems, such communication capability is unavailable 
for reasons of

cost, reliability, bandwidth, survivability, security, and similar factors.

In practice, the sensors and associated local signal processors in dis-

tributed surveillance networks tend to be designed relatively independently of

*one another, with communication restricted to higher level signal characteris-

tics (e.g., reports of emitter detections). While such practice has the vir-

tue of simplicity, there is a potential loss in performance due to considering

each sensor individually, rather than as an element in an overall surveillance

system.

Motivated by such considerations, Tenney and Sandell formulated and

solved a number of distributed detection problems (with random variable obser-

vations) in [5]. From a technical point-of-view, these problems were problems

*References are indicated by numbers in square brackets and appear at the end

of this paper.

t4
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in team theory [6] or decentralized control theory [7]. Subsequently, a num-

ber of authors have generalized the formulations in [51 in various directions

[81-[12]; however, all have considered only the case of random variable

observations.

In this paper, we generalize the distributed detection theory results of

[5] to the case of waveform (i.e., stochastic process) observations. Thus we

will have two hypotheses to test,

1. H0 : signal is absent, and

2. Hl: signal is present.

Corresponding to these two hypotheses, we have the potential decisions ui=O

(H0 is true) and ui=1 (HI is true) made at the i-th local sensor. The cost of

decision errors is measured by a cost function J(u1 ,u2,H) (for the case of two

sensors); it is desired to choose local decisions ui on the basis of locally

available observations yi(t) to minimize the expected value of J.

Note that in the special case of a surveillance system in which the deci-

sions ui are transmitted to a central fusion center (Fig. 1-1) where a final

decision is made, the cost J has the special form

J(u1 ,u2,H) J'(f(u1 ,u2 ),H) (i-I)

where J'(u,H) is the global decision cost and f(u1 ,u2) is the (fixed) fusion

law (e.g., voting) used to determine u from u1 and u2.

In the sequel, we will assume that the local signal processing imple-

mented at the i-th sensor consists of the following two steps:*

*As will be noted subsequently, only in special cases is it in fact optimal to

base the detection decision on the local likelihood ratio.

ii 2 '0
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EMITTER

PROCESSOR 1 PROCESSOR 2

U1=LOCAL DECISION 1 u2=LOCAL DECISION 2

Uf(U1,U 2 ) FUSION CENTER

u=GLOBAL DECISION

Figure 1-1. Surveillance System With Final Decision Made at a Centralized
Decision Node.

LI 3
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1. Determine the local log-likelihood ratio 1i; and

2. Implement the test*

H1

Xi < Ti . (1-2)

H0

We will then determine the optimal thresholds Ti.

In Section 2, we consider the case in which each Yi(t) is either a known

signal plus noise (H'), or just noise (H0 ). In the special cases in which:

(1) the noise is uncorrelated between sensors, and (2) the noise is correlated

between sensors but is white and the signals are linearly dependent, we are

able to obtain sufficient statistics for local decisionmaking. The technique

involves expanding the observation processes into a Karhuren-Loeve series.

Numerical results are provided for the case of detection of a sinusoidal sig-

nal in white Gaussian noise. Numerical results are presented for both the

general Bayesian case and for the case with a centralized fusion center.

In Section 3 we consider the case in which the signal is a Guassian sto-

chastic process. Results are more difficult to obtain here, since the log-

likelihood ratio is a nonlinear (quadratic) function of the observations even

in the centralized case. However, in the important special case of an ideal

band limited signal in white noise, we are able to obtain a closed form

(albeit rather complex) expression for the joint probability density function

of the local log-likelihood ratios. This expression permits us to solve for

*The notation means "choose H1 if kipTi, and choose H0 if Li<Ti."

4
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the optimal distributed detection thresholds. Numerical results are presented

for both the general Bayesian case and for the case with a central fusion

center.

Section 4 contains a summary, some conclusions, and suggestions for .-

future research.

5 -.
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SECTION 2

KNOWN SIGNAL IN NOISE

In this section we consider a distributed detection problem in which the

signals are known deterministic waveforms and the noise processes are colored

Gaussian processes. As stated earlier, we will restrict attention to the case
S

of two detectors each of which must make a binary decision based on local

observations.

2.1 PROBLEM FORMULATION AND PRELIMINARY ANALYSIS ,

We assume that there are two sensors, indexed by i=1,2 and that there are

two hypotheses to be tested based on the sensor observations. The observa-

tions under the two hypotheses are modeled by the equations

Hl: yi(t) = ~i si(t) +- ni(t) T04tTf

(2-1)
H0 : yi(t) - ni(t) Tomt(Tf

We assume that the si(t) are known signals with unit energy and are zero out-

side the interval [0,T] where T0 404T4Tf. The ni(t) are assumed to be zero-

mean Gaussian processes where

n

E{ni(t)nj(T) } = Kij(t,T) , i,j=1,2 (2-2)

and we assume (to avoid the possibility of singular detection)

6
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n c 2
Kii(t,T) Ki(t,T) + Ni6(t-t) (2-3)

with Ni*O. Note that we do not assume that the noise processes are uncorre-

n 
0

lated between sensors, i.e., we allow Kij(t,T) to be nonzero for i*j.

The approach we will use to determine the optimal distributed detection

laws consists of expanding the received waveforms in a Karhunen-Loeve (K-L)

expansion [1] and considering the problem formed by truncating the infinite

series of K-L coefficients to the first K terms. The truncated problem can be

approached via the technique of [5] and results for the waveform problem

obtained by taking the limit as K+-.

Thus we expand yi(t) via*

K kk

yi(t) = lim E yioi(t) , TomtTf (2-4)
K+- k=1

k
where the Oi(t) satisfy

kk Tf c k
=ii(t) f Ki(t,u) i(u)du , Tomt4Tf . (2-5)

To

Under H I we have

k k k
Yi = si + ni (2-6)

where

*x-lim xk is defined to mean lim Ix-xkI 2=0.

k o k+o

LI

tI7
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k Tf k

k T k W

yi ni . (2-9)

It is straightforward to show that 0

k
E{ni} =0 (2-10)

k k 2 -

E{(ni)2 } Ai + Ni (2-11)

and that the K-b coefficients corresponding to each sensor are uncorrelated:

E{nini} 0 X*k *(2-12)

However, the K-b coefficients for the two sensors are correlated, that is,

Tf Tf
E{(yi'-E{ytIHj})(yk-E~yklHj1IHj} f f 01(t)Kn (t,u)kudd ~

1 12 2T To 1 12 2 udd ck

j=0,1 , *k (2-13)

which is not zero in general.

8
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Using the results of 151 we can determine (implicitly) the optimal dis-

tributed decision law for the problem based on the first K coefficients of the

K-L expansion. Define

K 12 K

i= lYi,Yi,...,Yi) (2-14)

and

F k)2  k k

K K (si) 2yisi

A~y1  =k=1 e L 2(Xk+N2J ] .(-5

* The optimal decision law is then given by the solution of the following two

equations:

AJi+AJ2  f...f p(yKIY,H1)dyK

K
0u 2 

":

2=0

A (YK) > (2-16a)
< A +J+.AJ f f p(yKlyKHI)dK
1 3 A4 -21 2

~lu =0

AJs+AJ2  f-..f p(yK yK,HI)dyK

K [=-5 2 -1 -

A (YK) > (2-16b)
2-2 < AJ +AJ f f p(yKIyK,H0 )dyK

1 6 A 4 J-1.2f1K

where the AJn are given by the following equations:

9
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A = J(OIHI) - J(1,1,H 1 ) (2-17a)

A = J(O,O,H I ) + J(I,I,H I ) - J(1,0,Hl) - J(O,1,H I ) (2-17b)

AJ3 = J(1,1,H
0 ) - J(0,1,H 0 ) (2-17c)

A = J(I,O,H 0 ) + J(0,1,H 0 ) - J(O,O,H0 ) - J(1,1,H 0 ) (2-17d)

A = J(IOH') - J(1,1,Hl) (2-17e)

and

AJ6 = J(1,1,H 0 ) - J(I,O,H 0) . (2-17f)

Note that the decision law for each sensor is required to determine the

region of integration for the right-hand side of Eq. 2-16. Thus, the deter-

mination of the optimal distributed decision law requires the solution of

coupled nonlinear functional equations. No general analytic solution to these

equations has been determined and numerical techniques do not seem to be com-

putationally feasible. In general, it is necessary to assume some special

form for the local signal processing (e.g., a likelihood ratio computation)

and optimize the thresholds. However, in certain special cases more can be

said.

10
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2.2 SPECIAL CASES

2.2.1 Uncorrelated Noise

The easiest case to consider is that in which the noise is uncorrelated

between sensors, i.e., Kl12(tT)-0. Under this assumption we have that

K K Kp(yij,Ht) p(yiIN£) i,j=l,2,i*j,1=0,1 (2-18)

and thus Eq. 2-16 becomes

AJ 1+AJ f.-f p(yKH 1 )dY2K

K
2 2ju =0

A (yK) > A TK (2-19)
- < AJ +J J...f p(yKIHO)dyK 1

EI _Klu =C1Y 2

AJ5+AJ2  f...f p(_yKIHI)dyK

Klu=

242 < AJ +AJ f..f p(yKIHO)dyK 2

1 ~ ~ - 1 1 -yKlu =0 -

Note that the right-hand sides of the above equations do not depend upon

K
the local observations, but are constants, which we define as Ti. Thus, the

optimal distributed decision law is given by a pair of local likelihood ratio

tests where the thresholds are implicitly defined by Eqs. 2-19 and 2-20.

If we take the limit as K+- then one can show (see [1]) that the optimal

decision laws can be written as

II0
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Tf 1Tf

yi(t)gi(t)dt > - NFE f si(t)gi(t)dt Ti2-1

where the left-hand side of Eq. 2-21 is determined by

Tf

gi(t) t~i To f Qi(t,u)si(u)du (2-22)

and Qi(t,u) is defined by

Tf n

Tf Kii(t,u)Qi(u,v)du =6(t-v) .(2-23)

L. The right-hand side of Eq. 2-21 is a constant (observation-independent)

threshold and the Ti satisfy the following nonlinear coupled algebraic

equations:

AJ +AJ [1-erf((Q +i )/VT1~

i2  n -(2-25)

where1er(T M)//2

2 4T 2 Y
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Note that in general, Eqs. 2-24 and 2-25 do not have a unique solution

and thus the optimal decision law must be determined by computing all solu-

tions and then comparing their performance. The decision law of Eq. 2-21 ex-

tends the results of [51 to the case of waveform observations and this law can

be interpreted as a pair of local likelihood ratio tests with thresholds which

are jointly optimized according to a system-wide measure of performance.

2.2.2 Linearly Dependent Signals and Correlated White Noise

In this special case we assume that s1 =s As so that the observations are

given by

H1 : yi(t) = *1F s(t) + ni(t) Ot<T

(2-27)
H0 : yi(t) = ni(t) O<t4T

Furthermore we assume that the ni(t) are zero-mean unit spectral height, white

Gaussian noise processes where -

E{n (t)n (T)) = p6(t-T) . (2-28)
1 2

As usual we expand the received waveform in a K-L expansion where now we

k
. choose the *i(t) to be any complete orthonormal set such that

* =k (t) =k(t) 0t<T (2-29)
1 2

I-I

and

( = s(t) <tT . (2-30)

III

It is easy to verify that if

13
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K kk

yi(t) = lim E yi) (t) (2-31)
K- k=l

|S
then

(4 fE i+ wi H1

yU 1 (2-32)i wi : H O

k w i  : H I  -

Yi k=2,... (2-33)Swi HOOHo  '
where

T
wi f i(t)ni(tldt

0

and

Eowkw = p6(k-.) .(2-34)

12

k
Note that the coefficients Yi for k>2 have the same statistics under both

1hypotheses and are independent of the y Thus any optimal decision law will
i

1 1use only the y to decide between the hypotheses H0 and H1 . The y are thus
i i

scalar sufficient statistics for optimal decisionmaking in the team decision

problem with information pattern defined by Eqs. 2-27 and 2-28.

Any optimal decision law can therefore be specified for this problem by

* 1'
defining the regions of the real line in which y must lie for a decision of

i

H1 to be made. These regions can be specified by their endpoints, and thus

the decision law can be characterized by a set of endpoints, or thresholds,

14
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for each detector. The optimal distributed decision law is determined by

22-I 2X Li
choosing collections of thresholds {[Ti ,Ti J}X=I, i=1,2 as follows:

2X T 21+1
1 if Ti  4 f si(t)yi(t)dt Ti  ,

Ui = (2-35)

I 0 otherwise

Necessary conditions for the optimality of the thresholds are readily

developed if Li is specified. Since the number Li of such thresholds is arbi-

trary one must compare the performance cf laws with different Li's to deter-

mine the optimal distributed detection law. We have calculated optimal laws

based on the assumption that L1 =L2 =L=1 or 3.* In all cases the laws based on

the assumption that L=1 proved superior. While we have been unable to prove

that L=1 is optimal, we will only consider that case in the sequel.t

The optimal detection law for the L=1 case is given by

T 1f s(t)Yi(t)dt > Ti  (2-36)

0 <
0

wherre T and T2 satisfy

*Clearly ui=0 as y1._ and ui=l as y 1 +- so that an even number of intervals
i i

is required and thus L must be odd.

tNote that the necessary conditions for optimality consist of 2L nonlinear

coupled equations; the assumption of L=1 leads to considerable reduction in

the computational burden.

15
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E 1 AJ +AJ 2erf [(T-4E-p(T-4E))/ /17 2

T - 1%n (2-37)
2 NfE AJ 3 +AJ 4 err [ (T 2- PT I)/I- -2 j

1 2 1 n A AJ 2A e2[

2  In

2j 6+Aj 4 erft(T -pT 2)/ V 2I (2-38)

For the special cases considered above the "local" likelihood ratio is a

sufficient statistic for optimal distributed decisionmaking. More generally, 0

coupled functional equations must be solved to determine the optimal distrib-

uted detection law. However, given the difficulty of solving such equations

and the above results, a reasonable choice for a distributed detection law is

to use local likelihood ratio tests with globally optimized thresholds. Note

that this choice implies that the same signal processing can be used whether a

sensor is used alone or as part of a surveillance network -a strong practical

requirement! In Section 3 we will take this approach when considering the

detection of an unknown signal in noise.

2.3 NUMERICAL EXAMPLES

Here we consider an example involving a scalar observation with corre-

lated noise.* First we introduce the observation model and rewrite the neces-

sary conditions, then in subsections 2.3.1 and 2.3.2 we consider two different

global cost functions.

*The special case of uncorrelated noise reduces to the scalar observation

problem studied in [51 and thus we do not consider it here.

16
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Assume that the observations are given by

H1 : yi(t) = sin(2wt) + ni(t) O4trl

(2-39)
H0 : yi(t) = ni(t) 04t1C

where ni(t) is zero-mean unit variance white Gaussian noise with

E{n (t)n 2(T)} p6(t-T) . (2-40)

We assume p0 =pI=1/2 and note that the detection law can thus be written as

T I

y A 2 f yi(t)sin(27t)dt > Ti  (2-41)
0 <

0

where the Ti are solutions to Eqs. 2-37 and 2-38.

2.3.1 Bayesian Formulation

We assume that the thresholds Ti are to be selected so as to minimize the

expected Bayes cost where

S0 if u 1=u2=H

J 1 if u1*u 2  . (--42)

i k if u=u 2*H

This type of cost criterion arises in situations where it is not precisely

twice as costly to make two errors as it is to make one. For example, if

weapons are collocated with sensors and targets are automatically attacked

when detected, then having two missed detections may be much more serious than

17
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having one missed detection. This situation would be modeled by choosing k>2,

so that a double error is more than twice as costly as two single errors.

For J defined by Eq. 2-42, Eqs. 2-37 and 2-38 become

1 ,.1T E -(T ) EJ)

- 1+(k-2)erf

T, = in (2-43)

(k-1)-(k-2)erf -

L - -- nJ(2-442 VE T-pT
21

5 (k-1)-(k-2)erf

and we note that the thresholds for the locally optimal test*(T= /2

I-P2

0I

* T2=V~I/ saisfyEqs 2-43and 2-44. This p( can bese.ynoigta

0

*That is the test with thresholds that would be optimal for each sensor con-

sidered in isolation when a minimum probability of error criterion is used.

18 0
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[+(k-2)elf] 1+t(k-2) (1-erf [;~ ~I

l~k-l)-k-2)erfp 
VIE 

(k-1.)-(k-2)erf 
p

(k-l)-(k-2)erf

-n(1) =0 .(2-45)

Equations 2-43 and 2-44 are symmetric; if (T , T 2 is a solution, then
* A A1

(V'E1Tl, %rf/ -T 2) is also a solution. This is seen by noting that if

N E1+(k-2)erf T UPT,

TVr7 (2-46)

T-:pT
2 1

(k-1)-(k-2)erf

then

A 19
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4E (k-l)-(k-2)erf T2-6T )/

- n

2

4E1 I-+(k-2)erf I•

- In

2 r 1
1+(k-2) L-erf L4 2-T 2 )P CIT1 /Vi] ]

1E -4 E-T)4
Ej 1+(k-2)erf

(k-l)-(k-2)erf L TT (2-47)

The costs associated with these two symmetric solutions are identical and

thus, if a solution with Ti*,4i/2 exists, only one of this pair need be

evaluated.

Graphical solution of Eqs. 2-37 and 2-38 shows that there are at most

three solutions to these equations, and for certain values of k and p there is

only one solution (the "locally optimal test" (LOT)). In Figs. 2-1 and 2-2 we

plot the Bayes cost associated with the decentralized likelihood ratio test

(DLRT) and with the LOT solutions for Vi!7=1, -=2 and various p and k.
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Figure 2-1 is a plot of the Bayes cost as a function of k for p=O and

p=0.5. Note that, for larger p, the optimal DLRT solution can be much better

than the LOT. This is because the optimal solution skews the thresholds to S

avoid the double errors which are more common for larger p and more costly for

larger k.

Note that for the LOT the cost increases as an affine function of k since

the probability of a double error is independent of k. The expected cost for

the DLRT never exceeds 1 since that value can be obtained by a suboptimal law

with thresholds set so that one detector always decides 0 while the other

always decides 1.

Figure 2-2 is a plot of the Bayes cost as a function of p for k=5. Again

we see that as p increases the DLRT becomes much better than the LOT. This

occurs because, as p+l, the probability of a double error (for fixed thresh-

olds) increases. The DLRT solution skews the thresholds to decrease the prob-

ability of a double error. This yields a 27 percent decrease in cost over the

LOT.

These results indicate that in some cases there is a significant gain to

be had by using the optimal decentralized likelihood ratio test rather than a

naive approach which ignores the correlation between sensors.

2.3.2 Surveillance System Design

In this subsection we assume that a local decision ui based only on the

information provided by sensor i is sent to a fusion center where a global

decision u is made. We assume that the fusion center decision rule is defined

as u-i if and only if u,=u 2=1. We display the overall performance of such a

surveillance system via a generalized network receiver operating

21 i
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* 1.5

1.3
LOT

I C)

LO 0.

U., . LOT

DL RT
DLRT

0.7

0.5

0.3
0 2 4 6 8 10

k (DOUBLE ERROR COST)

R-093(

Figure 2-i. Bayes Cost as a Function of k for DLRT and LOT
With E =1, E 2m4, and p=O or 0.5.
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- 1.0 *

LOT .

0.9

0.8

0.7

0 0.6 I

0 0.2 0.4 0.6 0.8 1.0

p(CORRELATION)

R -0937

Figure 2-2. Bayes Cost as a Function of pfor DLRT and LOT

With E,=1, E2=4, and k=5.
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characteristic (ROC) curve, which is a plot of the surveillance network's

probability of detection versus probability of false alarm. In addition to

plotting the performance of the DLRT we also plot the performance of the opti-

mal centralized detection law. This allows us to determine how the perfor-

mance of the surveillance system is degraded by requiring that only local

decisions (processed information) rather than raw sensor data be transmitted

to the fusion center.

The ROC can be obtained by varying the ratio of the cost of a false alarm

*" to the cost of a missed detection. If we let the false alarm cost be unity

and the missed detection cost be a then the necessary conditions for optimal-

ity become

Vi

a -erf [(Tj-4T'-p(T- fT))/V~IZ7p(248

2 -erf L:i-. 2 )/Y7!

T 2 = £n a (2-49)

Figure 2-3 depicts the performance of the optimal centralized test and

that of the DLRT for the case where the sensors are identical, = 2I

We see that as p increases the centralized and DLRT results become more and

more similar. Figure 2-3 also shows that as p increases the performance

degrades.

24
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This occurs in the centralized problem because as p increases 'he infor-

mation available for decisionmaking effectively decreases from 2 independent

observations with p=O to one observation with p=l. As p increases in the DLRT

case, each sensor has a better and better indication of what the other obser-

vation was, and thus the centralized solution can be more closely approximated

by the decentralized solution.

1.0

CENTRALIZED (p=O)
/// ' D LRT (p=O)

CENTRALIZED (p0.75)

PD 0.5 DLRT (p=0.75)

00

0 0.5 1.0

P F

P-093E

Figure 2-3. ROCs for Centralized Test and DLRT With

El1, E 2=1, and p=O.O and 0.75.
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Note, however, that the performance of the DLRT, while more closely

approaching that of the centralized test, degrades as p.1. This can be under-

stood by noting that if p is the probability of a local decision being wrong

then the probability of a double error is approximately p2 when p=O but is p

when p=l. Since the fusion center always makes an incorrect decision when

both local decisions are wrong, the performance degrades as p.l.

The phenomenon of the DLRT and centralized results growing closer togeth-

er as p increases is not universal. Figure 2-4 illustrates the behavior of

these two decision laws for the case of asymmetric sensors, 1 and 2.

We see that for the DLRT, the performance degrades as p.l. The reason is

exactly tthe same as in the case of Vi= 2=i. For the centralized case how-

ever, the performance becomes perfect as p 1. This occurs because by differ-

encing the sensor observations one has

HI: Ay(t) = yI(t) - Y2(t) (-1)sin(2nt) + nl(t) - n2 (t) (2-50)

H0 : Ay(t) = Y1 (t) - Y(t) = n (t) - n2 (t) . (2-51)

As p.l, Ay.(%f§-l)sin(2wt) if H I is true and Ay+0 if H0 is true, thus

perfect detection is possible.

These graphs illustrate that the performance difference between a DLRT

and a centralized test is strongly dependent on the problem being considered.

Similarly, the benefit in reduction of communications requirements achieved by

using a DLRT rather than a centralized test is highly problem dependent. It

is thus the case that detailed analysis is required to determine whether a
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DLRT or a centralized test should be implemented in a given situation. The

theory developed in this paper helps to provide the basis for developing the

tradeoffs.

1.0

- CENTRALIZED (P=0.75)

CENTRALIZED (P=O)

DLRT (P=O)

DLRT (P=0.75)

r D 0.5

0
0 0.5 1.0

Figure 2-4. RO~s for Centralized Test and DLRT With

E1=1 E 2=4, and p=0.0.
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Le

SECTION 3

UNKNOWN SIGNAL IN NOISE

-""0

In this section we consider a distributed detection problem in which the

signal is a random Gaussian process and the noises are white Gaussian proces-

ses. Again we consider only the case of two detectors and binary hypotheses.

We assume that the i-th sensor's observation under the two hypotheses is

modeled by:

H1 : yi(t) = cisi(t) + ni(t) Ot4T

(3-1)
H0 : yi(t) = ni(t) 04t<T

where the ni(t) are independent zero-mean unit spectral height, white Gaussian

noise processes and the signals si(t) are zero-mean unit power Gaussian pro-

cesses with known covariances:

s

E{si(t)sj(T)} A Kij(t,T) 0t,tT . (3-2)

If we expand the yi(t) in K-L series (generated by Kii(t,T)) then the op-

timal distributed detection test is given by Eqs. 2-16 and 2-17, where the

Ai(y i ) are now quadratic functions of the observations yi(t). Unlike the

known signal in noise case, all the K-L coefficients have statistics which

28
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depend upon which hypothesis is true. Thus none of the simplifications possi-

ble in subsection 2.2 can be applied - to determine the optimal detection law,

coupled nonlinear functional equations must be solved.

Since we cannot solve the equations defining the optimal distributed

detection test we look instead for a good alternative. The test we consider

is that motivated by the previous section: the distributed likelihood ratio

test (DLRT). These tests are defined by the equation

1

ki > Ti , i=1,2 (3-3)<

0

where £i is the (local) log-likelihood ratio and the Ti are optimized for the

best global surveillance system performance. This class of tests is not easy

to analyze for the problem of detecting an unknown signal in noise. The dif-

ficulty arises because the local log-likelihood ratios are not Gaussian. In

the discussion below we consider a problem for which we are able to obtain

results.

3.1 IDEAL BANDLIMITED SIGNAL

Consider a problem in which the observations are modeled by*

Hl: yi(t) = cis(t) + ni(t) 0t4T

(3-4)
H0 : yi(t) = ni(t) 0t4T

V!

*The bandpass version of this problem is readily treated in an entirely analo-

gous fashion; such a formulation is a reasonable model for passive detection
of a radio transmitter operating at a known frequency and with a known

bandwidth.
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where s(t) is a zero-mean Gaussian stochastic process of unit power with an

ideal bandlimited spectrum (Fig. 3-1) and the ni(t) are zero-mean unit spec-

tral height, Gaussian white noise processes. We denote the covariance of the

signal by KS(t,T).

s(f)

112W .

--- l- f-W

Figure 3-1. Signal Spectrum.

To determine the performance of the DLRT we first determine the form of

the local likelihood ratios and then calculate their joint probability distri-

bution function (conditioned on each hypothesis).

3.1.1 Local Log-Likelihood Ratio

If we expand the received signal via a K-L series,

K

yi(t) = lim E yk~k(t) Ot<T (3-5)
K+- k=l i

where the *k(t) satisfy
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T
,k~k(t) ) f St o)k(u)du 0 T(-6

0

U it is easy to show [2] that the log-likelihood ratio based on the first K0

coefficients at the i-th sensor is given by

;K E k= ( x (yk)2  r X n(1+c 2Xk)(37
1 2 k= ~ 2Xk i 2 k=1 3.

Since the thresholds Ti are constants in Eq. 3-3 we shall henceforth work with

-only the data dependent portion of LK, which we define as
i

i~~ 2 kc~ y) 38

1 TTi

xi - f f yi(t)hi(t,u)yi(u)dudt (3-9)

T 2 2
hi(t,u) + f c hi(t,z)Ks(z,u)dz =c Ks(t,u) ,O'~t,u4T . (3-10)

0 i
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3.1.2 Joint Probability Distribution Function

The derivation of expressions for the joint probability distribution

functions of ZI and £2 conditioned on H0 and H 1 is complex and thus the

details are relegated to Appendix A. Here we briefly sketch the derivation.

We first compute the joint moment generating function of the 1 K. This is

relatively straightforward as the yk are (for each i) conditionally indepen-
i

dent. We then take the limit as K P=. If we define

vi(r,s) A E{e - r - s 2IHi (3-)

then we have

2 kc1 2k

Xn o(r,s) = .k n L ( - (3-12)
2 k=1 I+(l+r)c2Xkj 1+(l+s)c 2 Xk

1 2

(1_P 2)
1 k

In Ui(r,s) = - E Xn (3-13)2 k=l 1+r (1-pk)c2 Xk) (l+s (1-p2)c2 Xk)-p2
k 2 k

where

c c
1 2

Pk A (3-14)
( 1+C 2 Xk)( 1+c 2Xk)

1 2
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If the observation time is long in comparison to the signal time con-

stants (i.e., if WT is large enough) we have [1] that the infinite sums in

Eqs. 3-12 and 3-13 can be replaced with integrals in which the eigenvalue mag-

nitude appearing in Eqs. 3-12 and 3-13 is replaced by the signal's spectral

height. This yields (for the ideal bandlimited signal) a trivial integral and

we have z

1+c 12W W +c /214 W

W (r1s) (3-15)
l1+(1+r)c2/2W +(l-p)c2/2-

F 1- 2  -~WT

W)-P2

L 2

where

c c /2W
1 2

p =(3-17)
1+c2/V.) +c2/ 2W)/( 1+c /2)( 2

We can then invert each moment generating function to obtain

(+YI+y

1 £1A/2 -A/2-1 -z77 £i - j)

p(1,11 HO)= - - e2 Y1 Y2_ (r(A /2))2
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1 2 /-

- 61
1 l-P2)y Y1  (1-P2)y 1 (1-p2)y 2 R2  Ip2)yIy 2]

r(6/2)

*1 /

where we have defined A=2WT as the observation time-signal bandwidt'. product,

Ei=c 2T as the signal energy received by the i-th sensor and yi=Ei/6 as the
1

signal-to-noise ratio in the signal bandwidth (recall the noise had unit spec-

tral height) and where IV(-) is the modified Bessel function of order v.

Surprisingly, both Eqs. 3-18 and 3-19 can be integrated analytically when

A~/2-1 is a nonnegative integer. We thus obtain under this assumption the

joint distribution functions:

Pr{1T1£2 T~j 01 ( i' /2-1 csf/! A/J' 2 -16~r
JH. r=0 rr - r=O 6/? (3-20)

where

2
1 +ci

6i - Ti (3-21)

i

and
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Pr{x 14T 1 , 2 <T2 1H
1 } =

k+A/2-1! r A/ 2-1 A/1-1
I-P A/ E 2kE o/r!] Zr r/!eO

k=O k!A/2-1! r=O rO

(3-22)

where
-

Ti
ai (3-23)

(1-p 2 )c2

i

Via Eqs. 3-20 and 3-22 we can evaluate the performance of the DLRT for

any pair of thresholds. It is thus straightforward to determine via numerical

techniques the optimal thresholds for any given problem. Results are given in

the next section.

3.2 W.U1ERICAL EXAMPLES

Here we will present numerical results for the distributed detection of

an ideal bandlimited signal in white Gaussian noise. Both the general

Bayesian case and the case of surveillance system design will be considered.

3.2.1 Bayesian Formulation

Using the cost function defined in subsection 2.3.1 we obtain the results

depicted in Figs. 3-2 and 3-3. In Fig. 3-2 we have plotted the expected cost

of the optimal DLRT and that of the locally optimal test* (LOT) as functions

*For the cases considered here the sensors are identical and we define the LOT

as the DLRT satisfying the additional constraint that T=T2 .
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LGJ

of the double error cost k. The different curves correspond to different

values of signal energy (Ei=l, 10, 20, 40, 100), wher- the time-bandwidth

product has been held constant (A=10).

We note that identical results are obtained for k42, but that the costs

associated with the LOT become affine for large enough k. This occurs because

when T=T2 the probability of a double error cannot be reduced to zero. For

large enough k, the cost of double errors dominates the growth of the expected

value of the cost EJ and the affine curves result. The cost for the optimal

DLRT of course never takes on a value greater than unity (since taking u1 =1

and u2 =0 gives J41). As the signal energy is increased the performance of the2]

DLRT improves and the point at which the LOT is not longer globally optimal is

also increased. This latter effect occurs because, as the signal energy in-

creases, the probability of a double error decreases rapidly. This means that

the cost is dominated by the cost of single errors until k becomes very large.

In Fig. 3-3 we again plot the performance of the LOT and the DLRT versus

k, but now signal energy is held constant, Ei=20, and the time-bandwidth prod-

uct is allowed to vary (A=2, 10, 100). Here we see the effect of frequency

diversity - for small k the LOT is optimal and the DLRT performance for A=10

is better than either A=2 or =100 (as also in Figs. 3-4 and 3-5). As k in-

creases, the effect of double errors increases and DLRT performancE is domi-

nated by the need to minimize double errors. For large k the DLRT skews the

thresholds so that one detector is likely to have u=0 and the other have u=1.

This strategy is so effective that, for the cases of Fig. 3-3 with k>20, the

cost of double errors is less than 5 percent of the total cost. The structure

of the Bayes cost EJ for large k is thus determined by the probability of

single errors when the thresholds are skewed to avoid double errors.
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Figure 3-4. Plot of P~1 for DLRT When PF=
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3.2.2 Surveillance System Design

Now we present results for the case described in subsection 2.3.2, i.e.,

the case in which a global decision is made at a fusion center by "adding"

together the local decisions made from the observations of the individual

sensors.

In Figs. 3-4 and 3-5 we plot the probability of a miss (i.e., that H0 is

decided when HI is true) as a function of the time-bandwidth product A=2WT,

for fixed probability of false alarm (i.e., that H1 is decided when H0 is

true). In Fig. 3-4 we have set PF= 0 .1 and in Fig. 3-5 we have set PF=0 .0 0 1.

The various curves represent the performance of the DLRTs and centralized LRTs

for different signal energies.

The curves labeled Ed plot the DLRT performance for two sensors each of

which, under H1 , observes a signal of energy Ed. The curves labeled Ec plot

the performance of the optimal centralized likelihood ratio test where, under

H1 , the total signal energy received is Ec.* In both figures we see the art-

ticipated ranking of performance curves: Ec<Ed<2Ec. This occurs since the

DLRT for the two sensor case must perform at least as well as the one sensor

centralized LRT and cannot perform as well as the two sensor centralized LRT.

In both these figures we see that the performance initially improves as A

increases and then degrades. This is basically due to the effect of frequency

diversity. We know [21 that most of the signal energy is associated with the

first 2A+1 eigenfunctions *k(t). Thus as A increases the number of signifi-

cant independent "observations" of the signal increases, however, the

*For this problem the centralized performance of one sensor receiving Ec is

exactly equivalent to that of two sensors each receiving Ec/ 2 .
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signal-to-noise ratio (SNR) for each "observation" decreases. Thus these

figures plot the tradeoff of number of observations versus SNR per

observation.

We note from Figs. 3-4 and 3-5 that the performance of the optimal DLRT

seems to be more similar to that of the one sensor centralized LRT than to

that of the two sensor LRT. In Fig. 3-6 we consider the relative performance

of these systems more closely. We compare the centralized and decentralized

systems by determining the amount of signal energy required by a centralized

system to perform as well as a decentralized system. The ratio Ec/Ed is

largest when the decentralized system performs well and is smallest when it

performs poorly. We take as baseline the performance of the optimal DLRT with

Ed=100 and PF=0 .0 0 1 and determine the Ec required to obtain the equivalent P.i.

Note that for A=2, Ec/Ed~l. 4 0 and thus the two-sensor DLRT performs as well as

1.40 centralized sensors. As A increases the DLRT performance degrades until

at A=100 we have Ec/Edt1.25.

The performance of the DLRT begins to improve as 2WT increases above 100.

The asymptotic performance has not been determined as optimal performance has

not been determined analytically and, for 2WT>100, numerical difficulties in-

trude into the computation of PMj and PF.

In Fig. 3-7 we plot the performance of DLRTs for different combinations
i

of sensors with PF=0 .0 0 1 . If we let Ed denote the signal energy received by

the i-th sensor than for all curves we have E +E 2=200. The different curvesd d

1 2
correspond to various ratios E /E . We note that the performance increases as

d d

the sensors become more asymmetric. This occurs since we are effectively

moving toward a centralized solution (note that at E 10, E 2200 the
d d
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Figure 3-7. Plot of P11 for DLRT with PF=
0*0 0 1, Various Sensor Combinations.
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performance is identical to that of Ec=200). When E =0 and E 2=200 the first
d d

threshold is zero so that u,=1 always and the second threshold is identical

to that associated with Ec=2 0 0 .

I
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SECTION 4

SU IRY, CONCLUSIONS, AND SUGGESTED RESEARCH

In this paper we have considered the problem of distributed detection

with limited communication. We have obtained optimal detection laws for the

case of known signals in noise uncorrelated between sensors and for the case

of linearly dependent known signals in white noise correlated between sensors. -

For both of these cases the optimal distributed detection law consists of

forming local likelihood ratios and testing these ratios against thresholds to

determine a decision. For uncorrelated noise a single threshold is optimal.

* This may well be the case for correlated noise as well, but we were unable to

prove or disprove this conjecture.

I For a specific example, with noise correlated between sensors, we found -

that the distributed detection law performs worse as the correlation in-

creases, while the centralized law may either perform better or worse. Thus

an analysis is necessary in each case to determine whether the performance -.

penalty for implementing a distributed detection law is worth the payoff in -

terms of reduced communications requirements.

We then investigated the problem of distributed detection of an unknown

signal in noise. This problem was found to be considerably more difficult

than the case of a known signal since the detection law depends upon the en-

tire received signal - a scalar sufficient statistic does not exist in gener-

al. As the optimal distributed detection law could not be determined we
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investigated laws employing local likelihood ratio tests. Even for this case

results are difficult to obtain since the local log-likelihood ratios are not

Gaussian. However, for an important special case (long observation time,

ideal bandlimited signals, white sensor noise) we were able to obtain analyt-

ical results. For this case we found that two identical distributed sensors

M generally perform as well as 1.25 to 1.40 centralized sensors.

More general problems of unknown signals in noise do not appear solvable

by using the methods of this report since the exact probability distribution

function is generally difficult to determine. The approach used in central-

ized problems [1],[2] is to generate approximations based on Chernov bounds

and Gaussian approximations or Edgeworth expansions. We considered several

such approximations for the distributed problem - in all cases the approxima-

tions were too inaccurate to be useful. A further drawback to those approxi-

mations is that the moment generating function vi(r,s) is required and, as

Appendix A makes clear, these quantities are difficult to compute for all but

the ideal bandlimited case.

Work in distributed detection is in its infancy, and many of the issues

that arise in the centralized theory can also be formulated in the distributed

setting. Moreover, the increasing tendency to net sensors together in mili-

tary surveillance systems makes the distributed detection problem formulation

of potential practical significance. However, as the results of this report

make clear, the distributed version of a given detection problem is often sig-

nificantly more difficult to solve than its centralized counter part.
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APPENDIX A

DERIVATION OF LRT PROBABILITY DISTRIBUTIONS

In this appendix we derive the joint probability distribution of the log-

likelihood ratios considered in Eq. 3-8. Recall that the log-likelihood

ratios Zi are defined as

K
-i = lim Xi (A-I)

K+m

where

K: 2 k""K 1 K c.),X k 2"

Xi (Yi) (A-2)
£ 2 A k=1(1+c2Xk "

and the Xk are the eigenvalues of KS(t,u) where

KS(t,u) = E{s(t)s(u)} . (A-3)

k
The Yi are the Karhunen-Loeve coefficients associated with the k-th eigenfunc-

tion of Ks. It is straightforward to verify that

k
E{y i jHj } = 0 , i=1,2,j-O,1 (A-4)

j k
E{yty i lH

0 }  6(j-k) (A-5)
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Efy jH 01 0 (A-6)

j k
E{YyilHl) =(c

2 Xj+1)6(j-k) (A-7)
i

EjyiyklH1l = cXj(j-k) .(A-8)

1 12 1 2

Thus, recalling that

K
p1(r,s) Li Efe 1 121Ii , i=O,1 ,(A-9)

we have

c~ c X
[cK k K 2k

-r - Z __ (yk)
2  (y 2

c OD 2 k=1~cX k=1 1+c2X 2

iK(r,s) =f f e -2- 1cki2~ L~ k
0

1 K k2 K k2
- E (yk) E (yk)

2 k=1 1 2 k=1 2

-e dyl P... ,dyK

(270 )K

1+c2 Xk
11+c 

2Xk -1.

1+(l+r)c 2)k - 1 1

K 2 2 2k
11 f e 1'1 y

1+( +c 2Xk

1+l r c (continued)
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i+c2Xk -

2 c2Xk -1

l+(l+s)c 2
),k - - _______

eO 1 Ilsc dyk
-~~ i+c2Xk2

2
211

1(1sc2Xk

i+c2Xk i+c2Xk

K 1 2

k=1 1+(1+r)c2Xk 1+(1+s)c2Xk
1 2

and similarly

.i~(r s) (1+r( 1-p2)c2Xk) ( +s(l1.p2)c2Xk)-.p2 (-i

where

c c A

1 2

4(l+c2Xk) l~ 2X

K

The Pi are not in a form which allows inversion and thus we simplify Eqs.

A-l0 and A-11. We do this by noting that 1], if

gx gU~j) (A-13)
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where Ai are the eigenvalues associated with K(t,u), then for long enough ob-

servation time T

gX T f g(S(f))df (A-14)

on where S(f) is the spectrum of K(t,u). The pi can be written as in Eq. A-13 by

using Eq. A-14 if we first take the logarithm and the limit as K-*. Thus

i Zn j0 (r,s) =- r Zn
2 k=1 1+(l+r)c2Xk 1+(I+s)c2Xk

2 2
T+c S(f) l+c2S(f) )

T _ 1 2

f £n df (A-15)
2 _ k 1+(l+r)c 2S(f) 1+(l+s)c 2 S(f)

1 2

and

/ 1-p2

1 ( k
In l(r,s) = - E In

12 k=1 (Irl-p2)c2Xk)( l+s( 1-p2)c2Xk-p
k 1 k 2 k

1-p
2

T 0k

In df2 _®(l+r(1-p2(f))c2S(f))(l+s(1-p2(f))c2S(f)-p2(f)
1 2

(A-16)

where 0

LO .
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c c S(f)
12

p(f) A . (A-17)

The integrals in Eqs. A-15 and A-16 are readily evaluated for the ideal

bandlimited spectrum, yielding (after exponentiation)

I 2 /W WT I+c 2 /2W WT

1 2

01 0(r,s) =(A-i18)

and

WT

11 (r,s ) =(A-19)
I(+r(l-p2 )c2/2W)(l+s(l-p 2 )c2/2W)-p

2 )P~

where

tc2 /2W c2/2WVi 2

p . (A-20)

(1c/2W) (l+c2/W
1 2

We define Ei=c 2T as the signal energy received by the i-th sensor, A=2WT
i

as the observation time-signal bandwidth product, and yi=c 2 T/2WT as the sig-
i

nal-to-noise ratio in the signal bandwidth. With these definitions we have

obtained Eqs. 3-15 and 3-16 of Section 3:
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Pi 0 r,s) =I (A-21)

= 1-P2  A L/2 (-

Using a standard set of Laplace transforms [5] we can invert Eq. A-21 to

* obtain

p(Z ,2 H) ~A/2 A/ (- Y+i Y2£

1 21

1/21 2 1p) 1 pt
p U1p) I1s1p) )k2JO Y((/))

__ __ 1 _ 2 _ _ _ _ _ _

L J (A-23)

A/2- A/ - e _1-p__y 
A/2

-e

r(A/2) (A-24)

(continued)
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p2£1 1M2Y

A/ 221s i (1-P2)yYY s+I/((l-p2 )

• e 1 2 2 (A-24)

r s+ /( 2(-p2))

which, using the time shift property of Laplace transforms, yields

- -____ - A/ 2
(1-p2 )y (1-p2 )y2  1_,

P(£iL 21H) = e

r(A/2) 
1-p2)y Y

2 1 2

(1-p2)Y1 Y2 -(.5
e .

The inverse transform is standard and yields

1 1 Z £2\

,L ') 1~0)Yl 21A/2 e 1-p2  Y Y) [ (1_P2)Y Y] l-
• - Yr(A/2) 

p

1 2/16--_.

-~ (A-26

AA/2-1 (2 (122 Y (J2) 2-

where IV(-) is the modified Bessel function of order v.

To obtain the distribution functions we now integrate Eqs. A-23 and A-26.

To perform these integrations we assume that A/2-1 is a nonnegative integer.

We obtain under H0 :
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A/2"' T fT 2  Fj 1+Y21 !

Pr{£1I4Tl, 4T 2 = j 1 f 2 0 d1d£ 2  = -

0 0 LY Y2 -

T 12
* 1 £tA/2-le ( I d 1  f 2 £A/21 e (dI 2 )

W (Ir(A/2)) 2 0 0 2

(+Y1 IT

r~irT 2

l+Yi 1+Y2 /2 1 \ I/ A/2-1 r!k /-- YI ) I!

Y> U 'i Y2 (r(/2))2 r= (A/2-1-0! 1

1+72 T2 0

e Y 2 A/2-1 r! 2  Y2
"er=O (A/2-1-r)! 1+y

0

-(6 +61 2 I61 A/2-1 \/62 A/2-1 6 i'

e- 6/r! E 6e E 6/r, (A-27)

1 2

where

1+-1

61 Ti i=1,2 . (A-28)

Yi

To integrate p( 11£2 10) we expand IV(*) in a series and integrate term

by term. From [13] we have that I
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= () ()k!(~ (A-29)

and thus we obtain

101

2 (1-p2)y 1Y2

1 X ( Xl2 \ p2 t1 X2  k+A/2-1

1-p]A21e L Y Y21 2/

p2r(eAI2) k=O k!k+A/2-l!

(A-30)
Integration yields

Pr{X 4T~p 2 4T 2'IH'1 f 1T1  I2 1( 2 IH1)dt dk
0 0

1-P2  1 1 cc 1

P2(1-p 2)y 1Y2 r(A/2) k=0 k!A/2-1ek!

/__,_ (1-p2).y
1_e dX ;l

p1  k+A/2-1 A ____

fT2 P2e 0-0) 2 dit (A-31)

( 2 +/-1-(:) (continued)
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i~p2) ~21 1k+A21' 2 )k+A/2-1
P2 (l-p2)y 1Y2  k -0O / - ! ( ~ 2 Y Y

1Ip ) _ _ _ _ __1 _ _ _ _ _ _ _ (l p2 y

e
r=O (k+A/2-1-r)! r

0

12 £2 ~

(1-P2)y k+A/2-1 (k+A/2-1)! -p)Y
* e 2_ _ _

r=0 (k+A/2-1-r)! r

=(1-P
2) ~2k e -e E Or/r!

k=0 kMt/2-1! r=0 -

8 2 k+A/2-1

** e 2 e Or/r! (A-31)
r=O 2

where

Tj
Oi (A-32)

(I-p2)y,

We thus have derived closed-form expressions for the joint probability distri-

bution functions as desired.
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